direct product, metabelian, supersoluble, monomial, A-group
Aliases: C22×D52, C52⋊C24, C102⋊5C22, C5⋊D5⋊C23, (C5×C10)⋊C23, (C5×D5)⋊C23, (C2×C10)⋊5D10, C5⋊1(C23×D5), C10⋊1(C22×D5), (D5×C10)⋊10C22, (D5×C2×C10)⋊7C2, (C2×C5⋊D5)⋊8C22, (C22×C5⋊D5)⋊6C2, SmallGroup(400,218)
Series: Derived ►Chief ►Lower central ►Upper central
C52 — C22×D52 |
Generators and relations for C22×D52
G = < a,b,c,d,e,f | a2=b2=c5=d2=e5=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, dcd=c-1, ce=ec, cf=fc, de=ed, df=fd, fef=e-1 >
Subgroups: 1964 in 300 conjugacy classes, 104 normal (6 characteristic)
C1, C2, C2, C22, C22, C5, C5, C23, D5, D5, C10, C10, C24, D10, D10, C2×C10, C2×C10, C52, C22×D5, C22×D5, C22×C10, C5×D5, C5⋊D5, C5×C10, C23×D5, D52, D5×C10, C2×C5⋊D5, C102, C2×D52, D5×C2×C10, C22×C5⋊D5, C22×D52
Quotients: C1, C2, C22, C23, D5, C24, D10, C22×D5, C23×D5, D52, C2×D52, C22×D52
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 17)(8 18)(9 19)(10 20)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)
(1 6)(2 7)(3 8)(4 9)(5 10)(11 16)(12 17)(13 18)(14 19)(15 20)(21 26)(22 27)(23 28)(24 29)(25 30)(31 36)(32 37)(33 38)(34 39)(35 40)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)
(1 38)(2 37)(3 36)(4 40)(5 39)(6 33)(7 32)(8 31)(9 35)(10 34)(11 28)(12 27)(13 26)(14 30)(15 29)(16 23)(17 22)(18 21)(19 25)(20 24)
(1 5 4 3 2)(6 10 9 8 7)(11 15 14 13 12)(16 20 19 18 17)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)
(1 33)(2 34)(3 35)(4 31)(5 32)(6 38)(7 39)(8 40)(9 36)(10 37)(11 23)(12 24)(13 25)(14 21)(15 22)(16 28)(17 29)(18 30)(19 26)(20 27)
G:=sub<Sym(40)| (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40), (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,38)(2,37)(3,36)(4,40)(5,39)(6,33)(7,32)(8,31)(9,35)(10,34)(11,28)(12,27)(13,26)(14,30)(15,29)(16,23)(17,22)(18,21)(19,25)(20,24), (1,5,4,3,2)(6,10,9,8,7)(11,15,14,13,12)(16,20,19,18,17)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,33)(2,34)(3,35)(4,31)(5,32)(6,38)(7,39)(8,40)(9,36)(10,37)(11,23)(12,24)(13,25)(14,21)(15,22)(16,28)(17,29)(18,30)(19,26)(20,27)>;
G:=Group( (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40), (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,38)(2,37)(3,36)(4,40)(5,39)(6,33)(7,32)(8,31)(9,35)(10,34)(11,28)(12,27)(13,26)(14,30)(15,29)(16,23)(17,22)(18,21)(19,25)(20,24), (1,5,4,3,2)(6,10,9,8,7)(11,15,14,13,12)(16,20,19,18,17)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,33)(2,34)(3,35)(4,31)(5,32)(6,38)(7,39)(8,40)(9,36)(10,37)(11,23)(12,24)(13,25)(14,21)(15,22)(16,28)(17,29)(18,30)(19,26)(20,27) );
G=PermutationGroup([[(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,17),(8,18),(9,19),(10,20),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40)], [(1,6),(2,7),(3,8),(4,9),(5,10),(11,16),(12,17),(13,18),(14,19),(15,20),(21,26),(22,27),(23,28),(24,29),(25,30),(31,36),(32,37),(33,38),(34,39),(35,40)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40)], [(1,38),(2,37),(3,36),(4,40),(5,39),(6,33),(7,32),(8,31),(9,35),(10,34),(11,28),(12,27),(13,26),(14,30),(15,29),(16,23),(17,22),(18,21),(19,25),(20,24)], [(1,5,4,3,2),(6,10,9,8,7),(11,15,14,13,12),(16,20,19,18,17),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40)], [(1,33),(2,34),(3,35),(4,31),(5,32),(6,38),(7,39),(8,40),(9,36),(10,37),(11,23),(12,24),(13,25),(14,21),(15,22),(16,28),(17,29),(18,30),(19,26),(20,27)]])
64 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2K | 2L | 2M | 2N | 2O | 5A | 5B | 5C | 5D | 5E | 5F | 5G | 5H | 10A | ··· | 10L | 10M | ··· | 10X | 10Y | ··· | 10AN |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 10 | ··· | 10 | 10 | ··· | 10 | 10 | ··· | 10 |
size | 1 | 1 | 1 | 1 | 5 | ··· | 5 | 25 | 25 | 25 | 25 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 2 | ··· | 2 | 4 | ··· | 4 | 10 | ··· | 10 |
64 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | D5 | D10 | D10 | D52 | C2×D52 |
kernel | C22×D52 | C2×D52 | D5×C2×C10 | C22×C5⋊D5 | C22×D5 | D10 | C2×C10 | C22 | C2 |
# reps | 1 | 12 | 2 | 1 | 4 | 24 | 4 | 4 | 12 |
Matrix representation of C22×D52 ►in GL6(𝔽11)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 10 | 0 | 0 | 0 |
0 | 0 | 0 | 10 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
10 | 0 | 0 | 0 | 0 | 0 |
0 | 10 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 10 |
0 | 0 | 0 | 0 | 1 | 3 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 10 | 0 | 0 | 0 |
0 | 0 | 0 | 10 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 3 |
0 | 0 | 0 | 0 | 0 | 10 |
0 | 10 | 0 | 0 | 0 | 0 |
1 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 10 | 0 | 0 |
0 | 0 | 1 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
10 | 4 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 10 | 8 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(11))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,10,0,0,0,0,0,0,10,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[10,0,0,0,0,0,0,10,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,10,3],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,10,0,0,0,0,0,0,10,0,0,0,0,0,0,1,0,0,0,0,0,3,10],[0,1,0,0,0,0,10,7,0,0,0,0,0,0,0,1,0,0,0,0,10,3,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[10,0,0,0,0,0,4,1,0,0,0,0,0,0,10,0,0,0,0,0,8,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;
C22×D52 in GAP, Magma, Sage, TeX
C_2^2\times D_5^2
% in TeX
G:=Group("C2^2xD5^2");
// GroupNames label
G:=SmallGroup(400,218);
// by ID
G=gap.SmallGroup(400,218);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-5,-5,970,11525]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^5=d^2=e^5=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,d*c*d=c^-1,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=e^-1>;
// generators/relations