Copied to
clipboard

G = C22×D52order 400 = 24·52

Direct product of C22, D5 and D5

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C22×D52, C52⋊C24, C1025C22, C5⋊D5⋊C23, (C5×C10)⋊C23, (C5×D5)⋊C23, (C2×C10)⋊5D10, C51(C23×D5), C101(C22×D5), (D5×C10)⋊10C22, (D5×C2×C10)⋊7C2, (C2×C5⋊D5)⋊8C22, (C22×C5⋊D5)⋊6C2, SmallGroup(400,218)

Series: Derived Chief Lower central Upper central

C1C52 — C22×D52
C1C5C52C5×D5D52C2×D52 — C22×D52
C52 — C22×D52
C1C22

Generators and relations for C22×D52
 G = < a,b,c,d,e,f | a2=b2=c5=d2=e5=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, dcd=c-1, ce=ec, cf=fc, de=ed, df=fd, fef=e-1 >

Subgroups: 1964 in 300 conjugacy classes, 104 normal (6 characteristic)
C1, C2, C2, C22, C22, C5, C5, C23, D5, D5, C10, C10, C24, D10, D10, C2×C10, C2×C10, C52, C22×D5, C22×D5, C22×C10, C5×D5, C5⋊D5, C5×C10, C23×D5, D52, D5×C10, C2×C5⋊D5, C102, C2×D52, D5×C2×C10, C22×C5⋊D5, C22×D52
Quotients: C1, C2, C22, C23, D5, C24, D10, C22×D5, C23×D5, D52, C2×D52, C22×D52

Smallest permutation representation of C22×D52
On 40 points
Generators in S40
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 17)(8 18)(9 19)(10 20)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)
(1 6)(2 7)(3 8)(4 9)(5 10)(11 16)(12 17)(13 18)(14 19)(15 20)(21 26)(22 27)(23 28)(24 29)(25 30)(31 36)(32 37)(33 38)(34 39)(35 40)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)
(1 38)(2 37)(3 36)(4 40)(5 39)(6 33)(7 32)(8 31)(9 35)(10 34)(11 28)(12 27)(13 26)(14 30)(15 29)(16 23)(17 22)(18 21)(19 25)(20 24)
(1 5 4 3 2)(6 10 9 8 7)(11 15 14 13 12)(16 20 19 18 17)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)
(1 33)(2 34)(3 35)(4 31)(5 32)(6 38)(7 39)(8 40)(9 36)(10 37)(11 23)(12 24)(13 25)(14 21)(15 22)(16 28)(17 29)(18 30)(19 26)(20 27)

G:=sub<Sym(40)| (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40), (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,38)(2,37)(3,36)(4,40)(5,39)(6,33)(7,32)(8,31)(9,35)(10,34)(11,28)(12,27)(13,26)(14,30)(15,29)(16,23)(17,22)(18,21)(19,25)(20,24), (1,5,4,3,2)(6,10,9,8,7)(11,15,14,13,12)(16,20,19,18,17)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,33)(2,34)(3,35)(4,31)(5,32)(6,38)(7,39)(8,40)(9,36)(10,37)(11,23)(12,24)(13,25)(14,21)(15,22)(16,28)(17,29)(18,30)(19,26)(20,27)>;

G:=Group( (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40), (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,38)(2,37)(3,36)(4,40)(5,39)(6,33)(7,32)(8,31)(9,35)(10,34)(11,28)(12,27)(13,26)(14,30)(15,29)(16,23)(17,22)(18,21)(19,25)(20,24), (1,5,4,3,2)(6,10,9,8,7)(11,15,14,13,12)(16,20,19,18,17)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,33)(2,34)(3,35)(4,31)(5,32)(6,38)(7,39)(8,40)(9,36)(10,37)(11,23)(12,24)(13,25)(14,21)(15,22)(16,28)(17,29)(18,30)(19,26)(20,27) );

G=PermutationGroup([[(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,17),(8,18),(9,19),(10,20),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40)], [(1,6),(2,7),(3,8),(4,9),(5,10),(11,16),(12,17),(13,18),(14,19),(15,20),(21,26),(22,27),(23,28),(24,29),(25,30),(31,36),(32,37),(33,38),(34,39),(35,40)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40)], [(1,38),(2,37),(3,36),(4,40),(5,39),(6,33),(7,32),(8,31),(9,35),(10,34),(11,28),(12,27),(13,26),(14,30),(15,29),(16,23),(17,22),(18,21),(19,25),(20,24)], [(1,5,4,3,2),(6,10,9,8,7),(11,15,14,13,12),(16,20,19,18,17),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40)], [(1,33),(2,34),(3,35),(4,31),(5,32),(6,38),(7,39),(8,40),(9,36),(10,37),(11,23),(12,24),(13,25),(14,21),(15,22),(16,28),(17,29),(18,30),(19,26),(20,27)]])

64 conjugacy classes

class 1 2A2B2C2D···2K2L2M2N2O5A5B5C5D5E5F5G5H10A···10L10M···10X10Y···10AN
order12222···222225555555510···1010···1010···10
size11115···525252525222244442···24···410···10

64 irreducible representations

dim111122244
type+++++++++
imageC1C2C2C2D5D10D10D52C2×D52
kernelC22×D52C2×D52D5×C2×C10C22×C5⋊D5C22×D5D10C2×C10C22C2
# reps112214244412

Matrix representation of C22×D52 in GL6(𝔽11)

100000
010000
0010000
0001000
000010
000001
,
1000000
0100000
001000
000100
000010
000001
,
100000
010000
001000
000100
0000010
000013
,
100000
010000
0010000
0001000
000013
0000010
,
0100000
170000
0001000
001300
000010
000001
,
1040000
010000
0010800
000100
000010
000001

G:=sub<GL(6,GF(11))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,10,0,0,0,0,0,0,10,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[10,0,0,0,0,0,0,10,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,10,3],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,10,0,0,0,0,0,0,10,0,0,0,0,0,0,1,0,0,0,0,0,3,10],[0,1,0,0,0,0,10,7,0,0,0,0,0,0,0,1,0,0,0,0,10,3,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[10,0,0,0,0,0,4,1,0,0,0,0,0,0,10,0,0,0,0,0,8,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

C22×D52 in GAP, Magma, Sage, TeX

C_2^2\times D_5^2
% in TeX

G:=Group("C2^2xD5^2");
// GroupNames label

G:=SmallGroup(400,218);
// by ID

G=gap.SmallGroup(400,218);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-5,-5,970,11525]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^5=d^2=e^5=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,d*c*d=c^-1,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=e^-1>;
// generators/relations

׿
×
𝔽